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G)pyp, = ‘f;m‘ﬁn /ol for Wy- g /2 YIS +olgy 1 /2)
or

G(w)pmpn =0 for W otherwise.

Ky+ Uy» @nd r, are evaluated at W = («.L in Bq. (4%.4). The

n =m terms are the covariance of the same mode observed at
the two detectors. With the range of time delay IT.l -~ Tal

limited to about the travel time between the detectors

|(xy = x,)/0,| , the most important terms in the summation are
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ABSTRACT

the usual way to determine the direction of a radiat-
ing source using an array is to steer the array for maximum
output. The steering can be done by time delays or by mechani~-
cally turning the array. The output of the array can be ex-
preséed as the sum of the time average of the products of the
pressure <P&P/;> observed a% detectors m and n . The value
of<:%;%n:)%;qﬁba>can be maximized by a proper choice of time
delays 1:;.‘ﬁ; « This procedure is straightforward in an infi-
rite homogeneous medium. If the medium is a layered waveguide,
there are many more possibilities for sutmaxima of the ?ﬁﬁgg
terms.

The normal-mode solution of the radiastion field of a
band limited noise point source in a layered waveguide was
given by the author in J. 7Acoust. soc. Am.t}l, 1473-1479 (1959).
The value of <l?;(7';) B:(Tn)> - function of time delay is

compared with the value of ?hPh obtained with mechanical

steering. For these calculations the noise source is assumed s

to have a bandwidth of 1/15 of the center frequency, and the
depth of the water is assumed to be about d@,over a thick layer
og’quongplidated sediment. The number of maxima of the
<§nfﬁi) BnCT£5> 1s related to the number of modes propagating in
the waveguide if the steering is done with time delays. Mechan-
ical steering ylelds one maximum that corresponds to the \gource

direction.
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1. Introduction

The use of an array to determine the direction of a
radiating source has been studied with many array designs,
processing techniques, snd signal-to-noise conditions.(1'7)
The usual way to determine the direction of the source is to
ad just the phases of the signals observed at each detector so
that the time average of the square of the sums of the outputs
is a maximum. The phase adjustments can be made by mechanically
turning the array or by time delays. Assumptions common to all
the studies are that the array is in & homogeneous medium, and,
in the absence of noise, that the signal observed at one detec~
tor is essentially the same as the signal observed at any other
detector. If the medium is not homogeneous but is a layered
waveguide, a number of things can happen. The medium is disper-
sive, i.e,, different frequencies travel with different group
and phase velocities. Depending on the number of solutions al-
lowed by the boundary conditions, a particular frequency can
have several different group and phase velocities. 1In addition
to these difficulties, the phase and group velocities are not
equal, Thus the signal changes as it travels in the gulde, and
characteristics of the received signal are largely due to the
waveguide.(8"9)

In this paper we re-examine the array steering problem
with both the array and source in a layered waveguide. The so-

lution of the pressure field due to a point source that radiates
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band limited noise in a layered waveguide has been given in
terms of normal modes. ') This pressure field is used with
the usual procedure of array calculations in the following sec-
tions. A numerical example with a two-element array and a
shallow-water waveguide is given. I should remark here that
this development is meinly concerned with waveguides that are
a few acoustic wavelengths thick and with very large source~
receiver distances. The source is driven by band limited noise,
and, in the numerical example, the bandwidth is one fifteenth
of the center frequency.

2. Propagation in a Layered Waveguilde

Tolstoy has given the theory of propagation of acous-
tic waves due to a simple harmonic point source in a layered
waveguide in detail.(11°13) It is sufficient here to summarize
his results.

All energy from a source in a uniform layer that is
totally reflected at the boundaries of the layer is trapped in
the layer. The trapped energy spreads cylindrically and has
many reflections from the top of, within, and at the bottom of
the wavegulde. The most convenient way to describe the pressure
field at a large distance is to use the normal-mode formulation
of the problem. We assume a horizontally stratified medium with
a free surface on the top. This is basically the shallow-water
problem with water over layers of sediment extending to basement.

The simple harmonic source is at depth 4 1in the
first layer. The detector is at depth 2z 1in the first layer
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and at range R from the source. The long-range solution for

the acoustical pressure P/ is the following:

(2.1)
P/ = 1p1AB-1/2 oIt m§1 Pp sin vy, 2z sinry, d x exp [-1(K,R¥E)] ,
in which
w = the angular frequency,
/(m = the horizontal component of the wave number for
the mth mode,
Kp =W0Cy
Cm = the phase velocity of the mth mode,
Tim = the vertical component of the wave number in the
ith layer,
Ty = be/uiz _Km2)1/2 :
P, = the mode excitation for mth mode,
a4 = velocity of sound in the ith layer,
and

Py = density in the ith layer.

It 1s difficult to express Km’ Tim® and P, B@s func-
tions of W 1in terms of the parameters of the waveguide. For
a particular waveguide, numerical solutions are computed. There
are many papers in the literature that pive the theory and tech-
niques.(”'16) For our purpose, the most important thing 1s
that simple functions of W can be used to approximate the nu-

merical vslues of ryp), KpW), and Pp (W) .




The extension of the simple harmonic source to the
band limited noilse source is obtained from Fq. (2.1) by using
the Fourier integral expression for the nolse source: :

(2.2)

o0
M
P(t)=f {e(w)iAn'1/2.mn§1 Pysin ry,z sin r, d x exp[i([(n‘ﬂ-rE)}dw .
-0

The source and receiver filter characteristics are included in

the funetion g(W) .

3. Array of Detectors

The usual way to process the signals from an array
of detectors is to add the signals and take the time average
of the square of the sum. The direction to source can be de-
termined by measuring the output of the array as a function of
steering direction. The objective of steering is to match the
phases of the signal from each detector so that all the signals
are the same. Array steering can be done by turning the array
or by placing the proper time delay in each signal channel.

Let us assume that we have an array of detectors 1,

2, ... N . The detectors measure acoustical pressures P, (t),

Pé(t). s+ Py(t) . Time delays are placed in each signal chan-

nel so the signals observed become (without change of notation)
P1 (t’?}), Pz(t‘Te)’ cooe Pn(t"Tu) « The Output of an additive ‘
array is the sum of the individual signals. The time average

of the square of the array output is the following:
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3.1) *
(P (t=To) o By (e=Tp) ) &

e

it
-M=
- M=

in which 2‘ is the complex ccnjugate of P and

(3.2) ; 3

*\ _ Real 1 .
< PP > = 1imT- 002T o Pp(t-Ty)Py (t-Tylat .

Fquation (3.1) can be separated into two sets of terms, the

squared terms <Pum*> and the cross terms <Pmpn*> -
The squared terms are independent of steering and time delay

for a source of stationary noise. The directional information
is obtained from cross terms. Upon separation of the terms in
the summation, Fq. (3.1) becomes

(3.3

B iw  EE
. 2
F=z B 2 I By (Ty-T)
nfm :
in which
(3.4) PanTaTa) = (Pa(t=Ty) » P (=T} .

The cross terms are also the covariances of pairs of
signals with time delays as defined by Eq. (3.2).('7) e va1-
5 ance of this paper will discuss a single covariance Fyp + This
simplification is mainly one of notation. It does not limit the

results to a two-element array because all of the cross terms

in Fq. (3.3) are similar.

4. Covariance of Two Signals

The coordinate axis is shown in Fig. 1. The detectors
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are in the xz plane at (xi.z1) and (xz.zz) . The source
is at depth d , distance R , and angle © as measured from
the y axis. The distance of the source is presumed to be
large relative to the thickness of the waveguide and the sepa-
ration between the detectors.

The covariance is obtained from Fq. (2.2) and Fq. (3.2).
The product of the integrals can be transformed to z multiple
integral by changing the variable of integration from W to
W' . The integration over t and application of the 1limit as
T tends to infinity indicates that the expression vanishes for

wWAW' .17 Thus one obtains the followings
(+.1)
42 2 i ;
F12(T) = Reel %—Véh-é p / Gw)mensin r1mz1sin TynZs
1 A mn J__
x sin ry d sin ry d exp {1[,’<mﬁ1-KnR2-{a(T1 -'f2)]} ald 4
in which
e
CWw) =g ¢g
R1 = R2~-2Rx1 sin e + x12
R, = R°-2Rx, sin 6 + x,°
2 2 2
and




+.2)

B
R

R -X4 sin ©
R >» X4
for ~
R >» Xn

Q

Equation (4.1) can be evaluated if the dependences

of G, Pm

of Km and r, as functions of W are shown in Fig. 24,

» Tpo and Km upon W are known. Numerical values

and numerical values of pm(w) are shown in Fig. 2B. The
calculations were made by Tolstoy for the shallow-water section
near Fire Island.(18) For first approximation, K and Tn
may be expanded as linear functions of W . Using the follow-

ing definition of the group velocity

= 3
S R
o
we have
(4.3) Ky = @-a,)/0,
for W 20.
~ fnf*"’bm
The approximate expressions for K and r  can be
F substituted into Fq. (4.1). If the bandwidth of the filter

function G() 1is narrow, a simple function can be used for
Py and the integrals evaluated. Wide bands can be treated by
piecewise integration of several narrow bands. One must be
careful in this integration since U, and Km are positive

for outgoing waves. (J 1is restricted to positive values in

8-
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The bandwidth of interest is the product of the filter

function G(w) and the mode excitations PpPn ° The product
may be approximated by an ideal filter with a bandwidth AW

and center frequency O)o . The terms in Eq. (4.1) can be in-
tegrated with Fqs. (4.2) and (4.3). The change of r, over

the range of AW 1is small enough thst r, can be considered
constant for this example. For Aw about 1/15 Wy » the er-
rors are less than 10 percent of the mode interference terms.(m)

The result of integration over the bandwidth Al o is the fol-

lowing:
(L.k)
i - =
Fyp & ;1—175%;75 wn PuPn 510 TygZq sin ry 2, sin ryd sin r,d
sin s O/2
X cos B A%;Va )
in which

@2}
n

R R o R
- -~ - in "‘( "T) )
L ] AR

w
I

o [(Km - Kp) R = Kpxy = Kpxp) sin € - (), (T1“TZ)] l

w=w° 0
Ms{m = equivalent ideal filter bandwidth for the product
G(OJ)Pmpn 9

Py * the average value of Pp in the frequency band Ah{m N




CWIPyD, = Dby /Oy TOr (L=l /2)SWNWI *00y, /2)

or

G((:.))pmpn = 0 for & otherwise.

Ky Ups @nd r_~ are evaluated at & = 6)0 in Eq. (4.4). The

n =m terms are the covariance of the same mode observed at

the two detectors. With the range of time delay |7} -'fal

limited to about the travel time between the detectors

|(xy = x,)/0,| , the most important terms in the summation are

the n = m terms for very large source distance. The cross terms

can have a contribution for time delays that are about the 4if-

ference of the travel times of energy in the different modes.

The time delays that maximize the covariance of the cross terms

or mode interference terns are related to the distance from the

source to the receiver. For a single detector, the auto-

covariance function can be used to determine the source distance.
We assume in the array steering problem that the {

source 1is at great distance and that the time delay range is

limited to that required to steer the array. The cross terms,

n#m, will be dropped. With these assumptions and simplifi-

cations Eq. (4.4) becomes

2 2
L] ~ e 2
(4.5) E12m. Aﬁﬂ- Z Pp sin 4 mZ1 sin Ty m2o sin2 im d
A&h x sin eJ
sin T{T- —'En—-'m
x cos (W I-K x sin ©) T

_{:Q{TQ x si: e)




in whieh

x =x/2 ,
X, =-x/2 ,
Tela-T . ;
2 f_._.R11/:z R21/2 ¥

and

aaﬁ = equivalent ideal filter bandwidth
for the product G(w)pm2 g

The mth term in the summation is the covariance of
the acoustical pressures at the detectors for the mth mode.
The size of each term is dependent upon the detector positions
and source depth, in addition to the array steering parameters.
The meximum value of the contribution of the mth mode
to the total covarilance E12 1s determined by the mode excita-
tion p, end source depth d , i.e., the value of P,> sinr, d .
The detector depths enter as the product
sin S S sin Tim 2o The value of this product can be plus,
minus, or zero. Since we are interested in the covariance of
the same mode at two detectors and the total covariance as a
function of steering, we assume that the detectors are at the
same depth.
The dependence of the envelope of the covariasnce func-

tion upon steering is given by the term of form singkf « The
maximum of s1n§/§ is at § =0 . The value of time delay 7T

-13-
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for which the function is maximum is dependent upon the group
velocity U, (for x sin @ not zero). The siné]f term
multiplies the term cosQnoTLKix sin €) that is slso dependent
upon the steering and mode. This term gives the oscillation of
the covariance of the mth mode as a function of steering. It is
dependent upon the angular frequency &é and the horizontal
component of the wave number Km (or in terms of the phase
velocity, Cm =l(mﬂu° ). The phase and group velocities of
energy propagation in a wavegulde are generally different, and
even for a single mode the steering time delay 7 for maximum
of the covariance may not correspond to the direction to the
source. Since the group velocity U& and phase velocity Cn
are dependent upon the mode, the covariance of the acoustical
pressures for each mode is a maximum at different time delays
(for x sin 6 not zero). If T 4s zero eand sin © is varied,
1.e., if the source 1s moved across tae acoustic axis of the
array or the array is turned for a stationary source, then all
of the terms are maximum at x sin € = 0 . For either type of
steering., the sum of the terms 1s complicated, and it is more

instructive to consider specific numerical examples.

5. Numerical Fxample
The shallow-water area off Fire Island has been used
for studies of propagation of acoustic waves in a layered wave-
guide. The agrcement of the experimental data with theoretical
calculations has been good.“o' 18) The wavegulde layering and

1l




the curves of W vs the horizontal and vertical components of

wave number for ithe Fire Island area are shown in Figs. 1 and 2.
The source is assumed to be about 7 m deep. The de-
tectors are assumed to be 500 m apart and 19 m deep. The center
angular frequency of the source is assumed to be 300w rad/sec
with bandwidth of 20w rad/sec . With these numbers, the con=-
tribution to the covariance of the 1st, 2nd, and 4th modes are
nearly equal, and the 3rd mode is nearly zero. Numerical values
of K - ard Um are obtained from Fig. 2. The amplitude factors
of the modes are nearly equal. The normalized covariance !%2
is the following:

(5.1) 4 sin(&o/2)(T-x sin ©/U)
F, (D) =1/3 z l‘cos(tu T-Kyx sin e) @W/2Y((=x sin 670

n=1,2,

The covariance function for an array in an infinite homogeneous
medium 1s obtained by letting the phase and group velocities be

equal for all mecdes. For the last case, the function is of the

cos w,{ ———A7§L312"§w o

g-"—'uoT-xsin 8/ay

following form:

where

the covariance 1s the same function for either time delay or
sin ¢ steering.
The results of the calculations are shown in Fig. 3.

Fipure 3A shows the covariance of two elements in an infinite

-15-
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hcnogeneous ocean. This result is similar in appearance to the
«ovariance of a single mode in the shallow-water wavegulde for
7=0 and sin ¢ steering. Figure 3B shows the total covari-
ance 'unction for sin © steering and three modes propagating.
The sharp maximum at X sin © = O and the lack of the sinf/§
envelope of the total covariance function are due to the dif-
ference between the K 's of the different modes.

Figure 3C shows the total covariance for the second

numerical example. The source is assumed to be in the direction

€ = 90 deg or in line with the detectors. The covariance func-

tion for each of the modes is similar in appearance to that in
Fig. 3A. However, the frequency of oscillation is different
for each of the medes, and the phase shifts of the cosine waves
are alsc different. The result of this is that the covariance
functions for the modes constructively and destructively inter-
fere with each other. The phase and group velocities are not
equal, and the phase of the cosine wave is not zero at a steer-
ing delay such that the sinfﬁg term is maximum. Since the
group veloclties of different modes are different, the enve-
lopes of the covariance functions sin §ﬁ/§i are maximum at
different values of time delay. The positions of the maxima

of the envelopes for the three modes are indicated. The exact
shape of the interference pattern in Fig. 3C 1s very much de-
pendent upon the source direction and the detector separation

x sin @ .

1P




If we were to compute the total covariance for a small
range of © near eo , we would find that the interference max-
ima and minima would describe an envelope that is approximately
of the form siq§4§ . This suggests that the total covariance
function could be squared and averaged over a small range of
x sin € . (This type of data processing does not seem to be
advantageous because it requires many determinations of the
covariance squared as x sin € 1is varied.) It may be possible
to combine the outputs of several detectors at different depths
so as to detect each mode separately. The separate covariance
function for each mode could be examined separately or recom-
bined with suitable time delays to give a total covariance

similar to that in Fig. 3B.

6. Conclusions

Steering an array in a waveguide is more difficult
than steering an array in an infinite homogeneous medium. The
reason is that the wave propagation in 2 wavepuide is more com-
plex. The energy propagates in many modes, and each mode can
have different phase and group velocities. Although we have
not studied the signal-to-incoherent-noise problem, it is rea-
sonable to compare signal-to-noise studies with the array
steering problem. In both cases we assume that we are measuring
the covariance of the acoustical pressure observed at two de-

tectors. A convenient definition of the output signal-to-noise

-18-




ratio of a covariance detector is the ratio of the covariance

(2)

squared to the mean square fluctuations of the covariance.
In this respect then, fluctuations of the covariance function
for very small changes of source direction can be considered
as an apparent noise,

Mechanical or s8in © steering gives a covariance of
the acoustical pressures with a well-defined maximum. The co-
variance maximum is in the proper direction. The width of the
maximum of the envelope of the covariance is narrower than
would be expected on the source bandwidth. This might be ex-
pected since several independent pileces of information, i.e.,
several propagation modes, are combined in this calculation.
The maximum of the covariance function should not fluctuate
for small changes of the source direction. In the absence of
incoherent background noise, the apparent noise level for this
type of array steering should be very low.

Time delay steering of a two-element array that de-
tects all modes yields a covariance that has several maxima
and minima. The complication is caused by the constructive
and destructive interference of the covariance functions of
the several modes, The magnitude of the interference maxima
and minima is less than or equal to the sum of the envelopes
of the covariasnce functions for each mode. The maximum of the

envelope of the covarliance of each mode occurs at a time delay

that ic determined by the source direction, detector separation,




ard group velocity of the mode. I suggest that it may be nec-
essary to average the square of meny covsriznce mezsurements
to determine the source direction with time delay steering.
Even so, the sum of the different z=xims of the envelopes for
the different directions would brosden the covariance functiom.
The fluctuations of the covariance may be large in this case
and correspondingly the apparent noise level large.

This study has been restricted to a noise source in
2 waveguide with infinite layers. The layers are assumed to
have constant thickness and comstant properiies. If the layers
are not uniform in the area of the array, the scoustical pres-
sures 2t the two detectors Py (t) =and Pz(t) can be different.
The non-uniforw conditions can cause the covariance function to
be small and erratic. Under these conditions, mezsurement of
the covariance function for any type of steering would indicate
that the =pparent noise iewvel is high.

As a2 final consideratiom let us assume that we have
a simple harmonic scurce in the waveguide. The freguency of
the acoustical pressure is the same for 31l detector positions
regsrdless of any non-uniform conditions or the number of modes
propagating. This means that the covariance of the acoustical
pressures is a function of the phase difference of the acousti-
cal pressures and that the covariance may be large, whereas
under the same conditioms with a noise scurce having sma2ll band-
width, the covariance would tend to zero. For these reasoms it




is difficult to predict the performance of a more complex array

in an irregular waveguide on the basis of studies made with a

harmonic source and a two-element array.
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